走進不科學小說好看嗎

第三百零五章 高斯的寶藏(中)(7.6K)

“......”

看著信誓旦旦、滿臉自己這波血賺的高斯。

徐雲輕輕張了張嘴,欲言又止。

他其實很想告訴高斯一件事:

以法拉第這個鴿子在歷史上的更新速度來看,他所謂的加更很可能只是畫餅來著......

徐雲上輩子在寫的時候也認識幾位畫餅高手,可沒少見過這種事兒。

比如裴屠狗啦、白特慢啦、天涯月照今等等。

當然了。

有畫餅高手,自然也有誠信之輩。

例如徐雲自己就曾經在2033年的時候,以日更三萬的戰績獲得了大量讀者的讚譽。

不過正常情況來判斷,法拉第是後者的機率幾近於無。

在原本歷史中。

他別說普通更新了,甚至連英國皇家學會請他寫的3000多個字的教材評述都能拖更兩年。

因此高斯大機率是被這位鴿子給忽悠過去了......

但話未出口,徐雲轉念一想。

要是自己把這件事告訴了高斯,那麼恐怕也就沒啥機會換取高斯的手稿了。

因此他生生止住了將出口的內容,只是略顯尷尬的乾笑了兩聲,便裝作一副毫不知情的樣子,將目光投放到了面前的手稿上。

隨後看著這些塞滿皮箱的手稿。

咕嚕——

徐雲重重的嚥了口唾沫,眼中閃過了一絲明顯的激動。

老天爺叻,這tmd可是高斯的手稿!

縱觀人類科學史。

在中古代的國內外,但凡是有名的行業大家,基本上都會留下一些自己所編寫的著作。

例如本土有楊輝的《楊輝演算法》,老蘇的《本草圖經》《新儀象法要》云云。

國外則有《沙的計算》、《螺線》等等。

而隨著科學水平的發展。

當時間線推移到16世紀之後,手稿,逐漸成為了一種記錄科學家成果的另類載體。

比起‘著作’。

手稿的隨意性無疑要高出許多,準確性和權威性則要低一些。

例如上面記載的可能是某某學者想到的靈感、天馬行空的解題思路,甚至無聊時隨意留下的塗鴉。

就像後世一些學生記的課堂筆記一樣。

有些時候過去一兩個月,可能連創作者本人都看不懂手稿上的內容。

但另一方面。

手稿中卻同樣可能蘊藏著某些驚人的成果。

比如說某些創作者已經解決、但不確信是否存在錯漏的數算答案。

又比如因為時局所限無法釋出的成果等等.....

在人類歷史中。

存留手稿最多的數學家是尤拉,這位也是個堪稱掛逼的神人。

他13歲就入讀了巴塞爾大學,15歲大學畢業。

16歲獲碩士學位,19歲開始發表論文,26歲時擔任了彼得堡科學院教授。

他的一生一生寫下了886種書籍論文,平均每年寫出800多頁。

彼得堡科學院為了整理他的著作,足足忙碌了47年。

更掛逼的是。

尤拉在30歲的時候右眼就差不多失明瞭,只能靠左眼看東西。

接著他的左眼又得了白內障,在59歲那年為了治療白內障進行手術,又被主治醫生戳瞎了左眼,至此左右眼徹底失明。

結果在雙目失明的情況下。

尤拉依舊以口述形式完成了幾本書和400多篇論文,解決了讓小牛頭痛的月離等複雜分析問題。

1911年瑞士自然科學基金會組織編寫了一本《尤拉全集》,計劃出84卷,每卷都是4開本——也就是一張報紙大小,一卷接近300頁......

截止到2022年,這本書已經出到了74卷,亞馬遜有售,叫做《OperaOmnia》。(./這是尤拉論文的檢索網址,防槓附錄)

更更更掛逼的是。

後世現存的尤拉手稿還不是尤拉的全部遺作你敢信?

沒錯,不是全部。

他有相當部分手稿在1771年的彼得堡大火被焚燬了,現存的只是部分而已。

所以有些時候你真的不能不懷疑某人是不是穿越者,因為他們的履歷實在是太離譜了......

而另一方面。

如果說尤拉是當之無愧的寫稿機器。

那麼最具價值手稿創作者的頭銜,就無疑要歸屬於高斯了。

比起尤拉那難以計數的手稿數量,後世儲存下來的高斯手稿其實並不多,只有20部筆記以及大約六十多封的來去信件。

但即便只是這麼點兒的手稿,直到徐雲穿越的2022年,都有一大堆尚未被破解出來呢。

比如此前提過的曼紐爾·巴爾加瓦。

他獲得2014年菲爾茲獎的專案,就是從高斯《算術探索》中二次型有關的章節受啟發而做出來的。

當然了。

後世之所以有許多手稿無法歸納出來,很大部分原因要歸咎於一些創作者的字寫得太潦草了......(.edu/~jdnoodies/Zuriotebook/,這是愛因斯坦相對論的手稿,老愛的字喲......)

順帶一提。

這些手稿有些在書店內可以買到影印版,國內比較常見的是錢老、黃緯祿先生的筆跡,錢老的字超級超級好看。

同時與尤拉一樣。

高斯也有部分手稿在死後遺失了,不過其中大部分是人禍——高斯和韋伯相交莫逆,韋伯和高斯的女婿都是哥廷根七君子之一。

因此在高斯死後,他的故居遭遇過多次非法闖入,遺失了不少東西。

黎曼在寫給戴德金的信件中便提及過高斯書房被暴力破壞的事情。

那些流出的手稿有些進入了收藏家的手中,2017年便有一位西班牙的收藏家將兩本筆記交還給了哥廷根大學。

這種死後不得安生的事情在科學界其實很常見,最倒黴的其實不是高斯,而是老愛:

這位科學史上和小牛爭第一爭到狗腦子快被打出來的大佬,在死後七個小時便被一個叫哈維的醫生偷走了真的腦子,並且切成了240塊。

直到老愛去世四十二年後,哈維才將老愛的大腦切片交給普林斯頓大學醫院。

這也是後世有些會調侃切片的真正根由,雖然估摸著很多寫到“切片”二字的作者本人並不知道這麼回事......

想到這裡。

徐雲不由幽幽嘆了口氣,將思緒收回到現實。

他先是從身上取出了實驗室用的手套——這年頭的手套都是加了鹼式碳酸鉛的乳膠手套,成本相對較高,所以做無毒實驗的時候基本上都是自帶並且反覆使用。

戴好手套後。

徐雲便彎下身,開始翻找起了高斯的手稿。

“高等分析隨想......”

“拓撲學中的尤拉示性數問題......”

“複變函式論的路徑釋疑......”

高斯放在皮箱裡的手稿很多,名目極其複雜,不過徐雲的目標卻也相當明確:

他只想要那些後世遺失或者有特殊意義的手稿原件。

至於非歐幾何這種1850年沒釋出、但後世已經完全形成體系的手稿,絕非他此行的目標。

過了一會兒。

徐雲忽然眼前一亮,拿出了一卷比較靠內的手稿:

“咦?”

只見這份手稿的封條上,赫然寫著一行字:

《親和數計算》。

親和數。

這個詞的英文名叫做friendlynumber,所以有時候也會被翻譯成友好數或者相親數。

它的釋意很簡單:

彼此的全部約數之和(本身除外)與另一方相等的兩個正整數,比如220和284。

舉個例子。

上過小學的朋友應該都知道。

220的約數為:

1、2、4、5、10、11、20、22、44、55、110,和為284;

而284約數為:

1、2、4、71、142,和正好為220。

故220和284是一對親和數。

這個詞最早出現在公元前320年,源自西方文明發源地之一的古希臘。

當時的學術巨頭畢達哥拉斯對數論的研究深不可測,他是“萬物皆數”的提出者。

他的門徒受他影響,對數的研究更是“走火入魔”,嘗試從世界的任何事物中尋找數。

結果一天。

他的門徒突發奇想,問了畢達哥拉斯一個問題:

老師,我結交朋友時,會存在數的關係嗎?

結果畢達哥拉斯說了一句很有名的話:

朋友是你靈魂的倩影,要像220與284一樣親密,我中有你,你中有我。

這句話,便是親和數的萬惡之源。

親和數問世以後畢教主並沒有歇著,而是帶領著畢氏學派乘機大肆宣揚起了“萬物皆數”。

不過很尷尬的是。

畢教主宣傳了幾十年,研究了幾十年,親和數依然還是隻有220和284。

直到畢教主去世,人們對於親和數的認知依然停留在220和284。

而且更尷尬的是在之後幾百年裡,數學界依然沒有找到第二對親和數。

所以大家開始懷疑220和284是畢教主碰巧隨口說出來的兩個數字。

隨著對於親和數研究熱度的減退,它就此漸漸淡出人們的視野。

直到公元850年,阿拉伯全能王數學家塔別脫·本·科拉提出了一個想法:

無窮的自然數中親和數一定不止一對!

他和以往數學家不同,他不打算去從漫無邊際的自然數中篩選。

而是從一般規律出發,試圖找到親和數的通用公式。

這位全能王為了研究親和數放棄了其他所有科目的研究,年僅20多歲就謝頂了。

不過功夫不負有心人,後來他總算歸納出了一個規律:

a=3X2^(x-1)-1

b=3X2^x-1

c=9X2^(2x-1)-1。

這裡的x是大於1的自然數,若abc均為素數,那麼2xab與2xc就是一堆友好數。

比如取x=2,那麼a5,b=11,c=71。

所以2×2×5×11=220和2×2×71=284為一對親和數。

結論一出,證明了畢教主不是信口開河,親和數的確存在,並且可以透過計算得到。

從這裡起,故事開始有意思了起來……

自那以後。

數學家們不再沒有頭緒的尋找親和數。

而是一邊尋找更為簡單的公式,一邊透過公式大量計算來尋找親和數。

但遺憾的是。

在之後800多年裡,數學家們不僅沒有最佳化全能王的公式,而且一對新的親和數都沒有找到.......

這也就是說。

在畢達哥拉斯之後2500年,沒有人能夠找到第二對親和數的影子!

這個局面一直持續到了1636年,逼王費馬閃亮登上歷史舞臺,一舉打破了2500多年的歷史尷尬。

這位“業餘數學家”實在看不下去了,白天養家餬口,晚上計算親和數,算的腦瓜子嗡嗡的。

最終在他算的滿頭白髮的時候,終於找到了第二對親和數:

17296和18416。

接著繼費馬之後,笛卡爾也計算出了第三對親和數:

9437056和9363584。

然後就是大掛逼、人形自走手稿印表機尤拉的登場:

他在1747年...也就是自己39歲的時候,一口氣找到了30對親和數!

接著大家還沒有反應過來,甚至來不及鼓掌,他又宣佈再次找到了30對.......

但到了這一步,親和數就僵住了:

直到1923年,數學家麥達其和葉維勒才會出其不意、明修棧道暗度陳倉。

《金剛不壞大寨主》

他們一口氣將親和數擴充套件到了1095對,其中最大的甚至達到了25位數。

在1747年到1923年之間,數學家們只用尤拉的公式計算出了217對親和數。

當然了。

隨著計算機被髮明出來後,親和數的計算就簡單許多了。

就像圓周率已經計算到了62.8萬億位一樣,後世親和數已經鎖定到38萬位數以上了。

你看,數字都有女朋友了,某些人卻還是單身狗。

哦,徐雲也是啊,那沒事了。

總而言之。

在後世已經計算出大量親和數的前提下。

徐雲期待的並不是高斯的這卷手稿能給未來帶去多大幫助,而是.......

高斯作為赫赫有名的數學王子,他對於親和數到底有沒有做過計算呢?

至少在徐雲的認知裡。

後世高斯的‘遺物’中肯定是沒有這卷手稿的——至少已經公開的那些筆跡裡找不到相關手稿的身影。

想到這裡。

徐雲不由看了眼高斯,說道:

“高斯教授,必須要選擇好手稿後才能檢視內容嗎?”

高斯點了點頭:

“當然,後續內容需要付費觀看。”

高斯的回答在徐雲的預料之中,所以他也沒想著討價還價啥的,當即答道:

“那麼高斯教授,我選的第一份手稿就是它了。”

高斯見說擺了擺手,意思就是隨你的便。

得到高斯的允諾後。

徐雲鄭重的將這卷手稿拿到了書桌邊,小心的解封了起來。

綁縛手稿的道具是一根紅絲線,徐雲拿住絲線一頭,像是解鞋帶似的一拉。

咻——

手稿瞬間展開。

這份手稿意外的有些薄,大概就一兩張的模樣。

徐雲依舊是戴著手套將其拿起,認真的看了起來。

手稿的開頭記著幾個數字,分別是:

220/284、2924/2620、17296/18416、9437056/9363584......

這幾個數字沒什麼特別的,都是前人所計算出來的親和數。

接著就是尤拉歸納出來的公式。

不過當徐雲繼續往下掃了幾眼,他的呼吸便驟然停滯了幾秒鐘。

只見手稿的下半部,赫然寫著幾個數字:

5564/5020

6368/6232

10856/10744

14595/12285

18416/17296

.......

1000452085744/1023608366096

1001583011750/1019368284250.......

最後一組數字的末尾可以看到一個清晰的黑色小點,顯然是鋼筆筆尖留下的痕跡。

而在這組數字下方,還可以看到一道公式:

σ(z)=σ(x?y)=1+[σ(x)-1]+[σ(y)-1]+[σ(x)-1][σ(y)-1]=1+σ(x)+σ(y)-2+σ(x)σ(y)-σ(x)-σ(y)+1=σ(x)σ(y)

D(x)=x(1+12+13+?+1x2)≈x[ln(x/2+1)+r]≈x(lnx-0.116)。

另外在公式的右側,還存在著幾個龍飛鳳舞的字母。

翻譯成漢字便是:

【太簡單不算了,無聊死個人】。

“.......”

徐雲無語良久,隨後抬起頭看向了高斯。

高斯眨了眨眼:

“你瞅啥?”

徐雲朝他輕輕揚了揚手中的手稿,對高斯說道:

“高斯教授,您這份手稿末尾的那句話......”

“哦,你說那個啊。”

高斯回憶了幾秒鐘,很快想起了徐雲說的內容,便解釋道:

“字面意思,當初我在收到約瑟夫寄來的尤拉手稿後花了兩天...應該是兩天時間吧,要不就三天——反正很快就算出了上百組的親和數。”

“後來我原本想歸納出一道對應的公式,不過算了一半感覺太簡單了,就把它放到了一邊。”

“哦對了,波恩哈德在三年前也算出來了這個公式,他的評價是有手就行。”

徐雲:

“.......”

高斯口中的約瑟夫就是約瑟夫·路易斯·拉格朗日,也是尤拉的愛徒,同樣是一位青史留名的數學家。

他與尤拉的關係,差不多就相當於黎曼和高斯一般。

尤拉——拉格朗日——柯西,以及高斯——狄利克雷——黎曼,這算是近代數學很有名的兩個傳承派系。

另外在歷史上。

拉格朗日也是尤拉手稿的繼承者之一,他會寄信給高斯倒也正常。

只是......

高斯的這番話,未免也太tmd打擊人了吧?

要知道。

哪怕是徐雲穿越來的2022年,數學界也依舊沒有一個統一的親和數公式。

無論是尤拉還是葉維勒,他們的公式都有一定的失誤率——例如尤拉便漏算了1184/1210這組數,直到1867年才由義大利的一個神童計算出來。

這個神童的名字叫做帕格尼尼,每次想到這個名字,徐雲都會歪樓到豬柳蛋帕尼尼......

後世篩選親和數靠的主要是約數和比較,也就是符合條件的輸出YES,反之便是NO。

說難聽點。

後世篩選的實質,其實就是窮舉法。

結果在1850年這個時代,高斯和黎曼居然都推匯出了親和數的標準公式?

不過考慮到這二位在歷史上的成就,加之尤拉已經推匯出了部分親和數公式......

好吧,他們能做到這一步似乎也沒啥好意外的。

與此同時。

這也算是解開了一樁數學史上的謎題:

在計算機發明之前,幾乎每個數學流派都會在親和數方面投入大量的精力和時間。

但唯獨高斯的哥廷根數學派系除外。

無論是高斯本人,還是黎曼、雅可比、戴德金或者狄利克雷,他們全都沒有留下過任何研究親和數的作品或者記錄。

這其實是一種很奇怪的現象,好比後世搞量子理論的大佬不去研究微擾論一樣違和。

如今隨著高斯的這番話,一切總算是真相大白了:

合著他們早就破解了親和數的謎團,覺得太簡單才沒去管......

隨後高斯看了眼有些意猶未盡的徐雲。

沉吟片刻,主動來到皮箱邊翻找了幾下。

很快。

他便從中取出了另一冊稍厚一些的手稿,遞給了徐雲,說道:

“羅峰,既然你對親和數有興趣,這卷手稿或許會符合你的口味。”

........

注:

生物鐘差不多調回來了,今天7.6k奉上,求保底月票啊,這個月沒雙倍的,9月10月才有

人氣小說推薦More+

殺人迷霧降臨,我能看到死者記憶
殺人迷霧降臨,我能看到死者記憶
【無限流+微驚悚+求生類+輕燒腦+無系統】 傅長欽一覺驚醒,發現自己的臥室,竟被搬到了一座詭異的別墅當中。 別墅外,是一個個被厲鬼所佔領的迷霧世界: 猶如刑場一般的情趣酒店 追求長生的祥寧小山村 一場由厲鬼組織的殺人遊戲 獻祭活人的規則怪談醫院 一場永遠完結不了的古代婚禮 屍體怎麼都拼湊不齊的連環殺人案...... 昏暗的床底, 【喂,傅長欽,你剛剛怎麼連你的隊友都殺?】 【我剛看到她,披上了人皮
搖六六六的豆豆
我靠線人系統在刑偵文裡當熱心市民
我靠線人系統在刑偵文裡當熱心市民
關夏帶著記憶胎穿,一直以為自己拿的是重活一世奮發圖強劇本 於是會說話起就根據上一世的經驗和愛好,兢兢業業學畫畫考美院,終於成為一名小有名氣的漫畫家 二十五歲就過上了夢寐以求的退休生活 就在關夏每天畫畫漫畫,旅旅遊,快樂的樂不思蜀時 某天關夏住的單元發生了命案,警察上門例行詢問,關夏的腦子裡突然跳出來一個介面,上面寫著: 線人系統繫結成功 你受到了警察的詢問,你突然想起來,4月19日下午17:53分
張小一
九等公民
九等公民
南容靠著小心謹慎(貪生怕死),在決定人類命運的日冕之戰中苟活到了最後。 再醒來時,全世界都忘記了那場戰爭,連她從軍三年的經歷,也都被抹得乾乾淨淨。 失去了珍貴的空間能力,南容表示全無遺憾:沒了是非根,是非就找不上門,她只想保住小命,當好一條稱職的鹹魚。 都說大難不死必有後福,結果她不小心混進了這個時代最有前途的基因最佳化師的行列中,還越走越遠。 但漸漸地,她開始發現事情有些不對勁兒:已經喪生於異界的
臨山海
三角翼行動
三角翼行動
作品簡介南京開泰公司專案主管徐晨旭赴澳洲後,一出機場就陷入某第三國神秘組織設下的圈套,隨即失聯。 這是一場特殊 “諜”戰,對手格摩波擁有國家背景,我方出手的是一家民營公司,同時也得到了國內相關部門的依法幫助。 這場複雜國際局勢下的交鋒,高科技手段和傳統手段交替上陣;我方堅決針鋒相對,鬥智鬥勇,詮釋了中共二十屆三中全會《決定》中有關 “強化海外利益和投資保護機制,深化安全領域國際執法合作,維護我國公
霜晨柳
他來自雷鳴星
他來自雷鳴星
擎問是一名雷鳴星金剛狼戰士。雷鳴星是平行世界裡一顆孤獨的恆星。 在地球時間五十年前,特斯達集團發射了一艘宇宙飛船穿過蟲洞,來到了雷鳴星,並送去了七個高智慧機器人。 穿過蟲洞後,地球就對宇宙飛船失去了控制,七個高智慧機甲人也不再受地球人的控制,它們可以按照自己的意識,去做任何事情。 雷鳴星上無盡的礦產和富含能量的瓊河之水成為機器人掠奪的目標,他們透過這些掠奪的資源,製造出了更多的機甲人,到後來,機甲
萬蟲